Cayley-Hamilton Theorem: Statement, Solved Problems

The Cayley-Hamilton theorem is about the characteristic equation of a square matrix. Using this theorem one can find the inverse of a matrix, the integral power of a matrix, and many more. In this post, we will study this theorem along with some applications.

Cayley-Hamilton Theorem Statement

Statement: Every square matrix satisfies its own characteristic equation.

More specifically, if A is an n×n matrix with characteristic polynomial c0xn + c1xn-1 + …+cn-1x +cn, then Cayley Hamilton theorem says that

c0An + c1An-1 + …+cn-1A +cn In = O

where O denotes the n×n zero matrix and In is the n×n identity matrix.

Related Topic: Characteristic Equation of a Matrix

Solved Problems

Q1: Using the Cayley-Hamilton theorem, find the inverse of the following matrix:
$A= \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}$

The characteristic equation of the matrix is given by det(A- xI2) = 0. That is,

$\begin{vmatrix} 2-x & 4 \\ 1 & 3-x \end{vmatrix}=0$

⇒ (2-x)(3-x) – 4⋅1 = 0

⇒ x2 -5x+2 = 0.

So by Cayley-Hamilton theorem, A satisfies its own characteristic equation. In other words, we have that

A2 -5A+2I2 = 0

⇒ A(A- 5I2) = -2I2

⇒ A ⋅ $\dfrac{-1}{2}$(A- 5I2) = I2

Hence by the definition of the inverse of a matrix, the inverse of A is given by

A-1 = $-\dfrac{1}{2}$(A- 5I2)

⇒ A-1 = $-\dfrac{1}{2}$ $\begin{pmatrix} 2-5 & 4 \\ 1 & 3-5 \end{pmatrix}$

⇒ A-1 = $-\dfrac{1}{2}$ $\begin{pmatrix} -3 & 4 \\ 1 & -2 \end{pmatrix}$.

Q2: Using Cayley-Hamilton theorem, find A50 where
$A= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

The characteristic equation of A is given by

$\begin{vmatrix} 1-x & 1 \\ 0 & 1-x \end{vmatrix}=0$

⇒ (1-x)2 = 0

⇒ x2 -2x+1 = 0.

By Cayley-Hamilton theorem, A2 -2A+I2 = 0.

⇒ A2 -A = A -I2

Thus, A3 -A2 = A(A2 -A) = A(A -I2), by previous equation.

⇒ A3 -A2 = A2 -A

⇒ A3 -A2 = A -I2.

In a similar way, one gets that A50 -A49 = A -I2. Therefore, we have the following equations

A2 -A = A -I2
A3 -A2 = A -I2

A50 -A49 = A -I2.

Adding these equations, we obtain that A50 – A = 49A – 49I2.

⇒ A50 = 50A – 49I2

⇒ A50 = $\begin{pmatrix} 50 & 50 \\ 0 & 50 \end{pmatrix}$ – $\begin{pmatrix} 49 & 0 \\ 0 & 49 \end{pmatrix}$

⇒ A50 = $\begin{pmatrix} 1 & 50 \\ 0 & 1 \end{pmatrix}$.

Q3: Verify Cayley-Hamilton theorem for
$A= \begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix}$

The characteristic equation of A is given by

$\begin{vmatrix} 0-x & 0 & 1 \\ 3 & 1-x & 0 \\ -2 & 1 & 4-x \end{vmatrix} = 0$

⇒ $-x \begin{vmatrix} 1-x & 0 \\ 1 & 4-x \end{vmatrix}$ + $ \begin{vmatrix} 3 & 1-x \\ -2 & 1 \end{vmatrix}$ = 0

⇒ x3 – 5x2 +6x -5 =0.

To verify Cayley-Hamilton theorem, we need to check A3 – 5A2 +6A -5I =0.

Now, A2 = AA = $\begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix}$ = $\begin{pmatrix} -2 & 1 & 4 \\ 3 & 1 & 3 \\ -5 & 5 & 14 \end{pmatrix}$

A3 = A2A = $\begin{pmatrix} -2 & 1 & 4 \\ 3 & 1 & 3 \\ -5 & 5 & 14 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix}$ = $\begin{pmatrix} -5 & 5 & 14 \\ -3 & 4 & 15 \\ -13 & 19 & 51 \end{pmatrix}$

Therefore,

A3 – 5A2 +6A -5I

= $\begin{pmatrix} -5 & 5 & 14 \\ -3 & 4 & 15 \\ -13 & 19 & 51 \end{pmatrix}$ – 5 $\begin{pmatrix} -2 & 1 & 4 \\ 3 & 1 & 3 \\ -5 & 5 & 14 \end{pmatrix}$ + 6 $\begin{pmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{pmatrix}$ – 5 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

= $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

= O, the zero matrix.

So the Cayley-Hamilton theorem is verified for A.

Share via: